
4096-word \times 4-bit High-Speed CMOS Static RAM

Features

• Single 5 V supply and high density 20-pin package

- High speed: fast access time 25/35/45 ns (max)
- Low power
 - Active: 250 mW (typ)
 - Standby: 100 μW (typ), 5 μW (typ) (L-version)
- Completely static memory: no clock or timing strobe required
- Equal access and cycle times
- Directly TTL compatible—all inputs and outputs
- Battery back-up operation capability (L-version)

Pin Arrangement



Ordering Information

Туре No.	Access time	Package
HM6268P-25	25 ns	300-mil 20-pin, plastic DIP
HM6268P-35	35 ns	(DP-20N)
HM6268P-45	45 ns	
HM6268LP-25	25 ns	
HM6268LP-35	35 ns	
HM6268LP-45	45 ns	

Note: This device is not available for new application.

Block Diagram

Truth Table

CS	WE	Mode	V _{CC} current	I/O pin	Cycle
Н	х	Not Selected	I _{SB} , I _{SB1}	High-Z	_
L	н	Read	I _{CC}	Dout	Read cycle
L	L	Write	I _{CC}	Din	Write cycle

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Voltage on any pin relative to V_{SS}	V _T	-0.5 ^{*1} to +7.0	V
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to + 70	٥°
Storage temperature	Tstg	-55 to +125	٥°C
Temperature under bias	Tbias	-10 to + 85	٥°

Note: 1. -3.5 V for pulse width ≤ 10 ns.

HM6268 Series

Recommended DC Operating Conditions (Ta = 0 to $+ 70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5.0	5.5	V
	V _{SS}	0	0	0	V
Input high (logic 1) voltage	V _{IH}	2.2	_	6.0	V
Input low (logic 0) voltage	V _{IL}	-0.5 ^{*1}	_	0.8	V

1. -3.0 V for pulse width ≤ 10 ns. Note:

DC Characteristics ($V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$, Ta = 0 to $+70^{\circ}C$)

Parameter	Symbol	Min	Typ *1	Max	Unit	Test condition
Input leakage current	I _{LI}	_	_	2.0	μA	V_{CC} = 5.5 V, Vin = V _{SS} to V _{CC}
Output leakage current	I _{LO}	_	_	2.0	μA	$\overline{\text{CS}} = \text{V}_{\text{IH}},$ $\text{V}_{\text{I/O}} = \text{V}_{\text{SS}} \text{ to } \text{V}_{\text{CC}}$
Operating power supply current	I _{CC}		50 *3	90	mA	$\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{ I}_{\text{I/O}} = 0 \text{ mA},$ min. cycle
Standby power supply current	I _{SB}	_	15	25	mA	$\overline{\text{CS}} = \text{V}_{\text{IH}}$, min. cycle
Standby power supply current (1)	I _{SB1}	_	0.02	2.0	mA	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V},$
		_	1 *2	50 *2	μA	$^-$ 0 V \leq V $_{IN}$ \leq 0.2 V or V $_{CC}$ $-$ 0.2 V \leq V $_{IN}$
Output low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 8 mA
Output high voltage	V _{OH}	2.4	_	_	V	I _{OH} = -4.0 mA

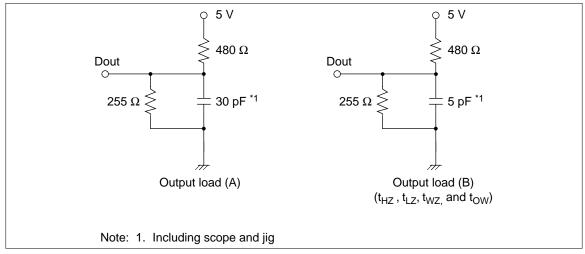
Notes: 1. Typical limits are at $V_{CC} = 5.0$ V, Ta = +25°C and specified loading 2. This characteristic is guaranteed only for L-version.

3. 40 mA typical for 45 ns version.

Capacitance (Ta = 25° C, f = 1.0 MHz) ^{*1}

Parameter	Symbol	Test conditions	Min	Мах	Unit
Input capacitance	Cin	Vin = 0 V	—	6	pF
Input/output capacitance	C _{I/O}	$V_{I/O} = 0 V$	_	9	pF

Note: 1. These parameters are sampled and not 100% tested.

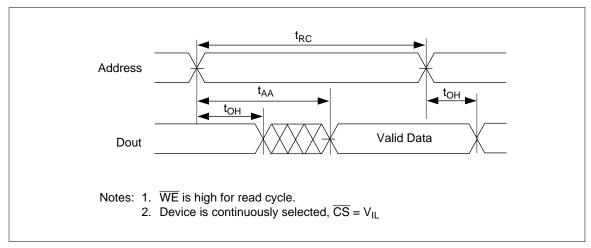

HM6268 Series

AC Characteristics ($V_{CC} = 5 V + 10\%$, Ta = 0 to +70°C, unless otherwise noted)

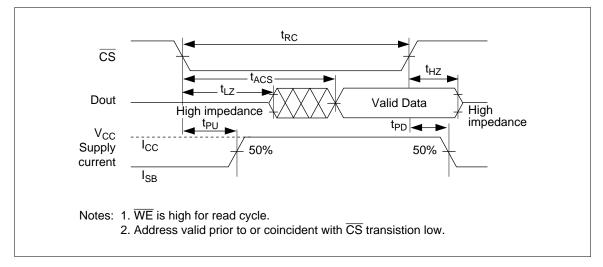
AC Test Conditions:

- Input pulse levels: V_{SS} to 3.0 V
- Input rise and fall times: 5 ns
- Input and output timing reference levels: 1.5 V
- Output load: See figure

Output Load



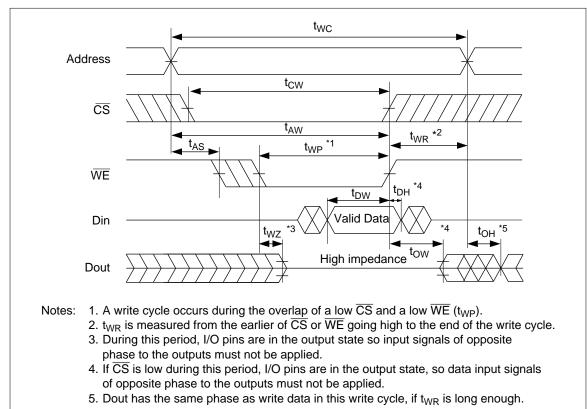
Read Cycle


		HM62	68-25	HM62	68-35	HM62	68-45	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Read cycle time	t _{RC}	25	—	35	—	45	—	ns
Address access time	t _{AA}	—	25	_	35	—	45	ns
Chip select access time	t _{ACS}	_	25	_	35	_	45	ns
Output hold from address change	t _{OH}	5	_	5	_	5	_	ns
Chip selection to output in low-Z	t _{LZ} *1	10	_	10	_	10	_	ns
Chip deselection to output in high-Z	t _{HZ} *1	0	15	0	20	0	20	ns
Chip selection to power up time	t _{PU}	0	_	0	_	0	_	ns
Chip deselection to power down time	t _{PD}	—	25	—	25	—	30	ns

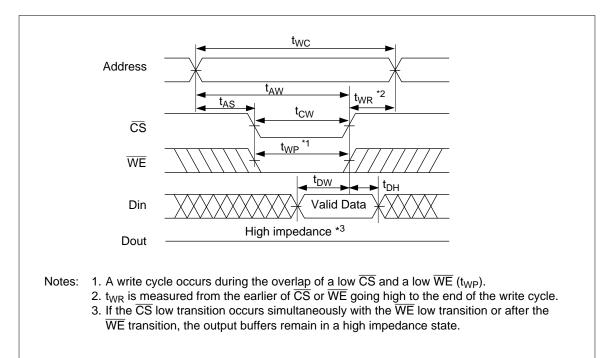
Note: 1. Transition is measured +200 mV from steady state voltage with load (B). These parameters are sampled and not 100% tested.

Read Timing Waveform (1)

Read Timing Waveform (2)



Write Cycle


		HM62	68-25	HM62	268-35	HM62	268-45	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Write cycle time	t _{WC}	25	—	35	—	45	—	ns
Chip selection to end of write	t _{CW}	20	—	30	—	40	—	ns
Address valid to end of write	t _{AW}	20	—	30	—	40	—	ns
Address setup time	t _{AS}	0	—	0	—	0	—	ns
Write pulse width	t _{WP}	20	—	30	—	35	—	ns
Write recovery time	t _{WR}	0	—	0	—	0	—	ns
Data valid to end of write	t _{DW}	12	—	20	—	20	—	ns
Data hold time	t _{DH}	0	—	0	—	0	—	ns
Write enabled to output in high-Z	t _{WZ} *1	0	8	0	10	0	15	ns
Output active from end of write	t _{OW} *1	0	_	0	_	0	_	ns

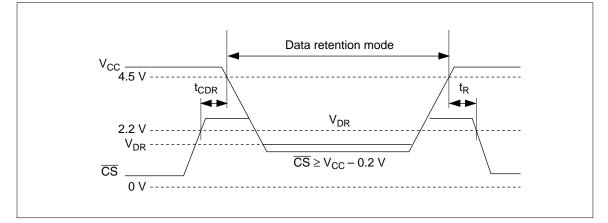
Note: 1. Transition is measured +200 mV from steady state voltage with load (B). These parameters are sampled and not 100% tested.

Write Timing Waveform (1) (WE Controlled)

Write Timing Waveform (2) (CS Controlled)

HM6268 Series

Low V_{CC} Data Retention Characteristics ($0^{\circ}C \le Ta \le 70^{\circ}C$)


These characteristics are guaranteed only for L-version.

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
V _{CC} for data retention	V _{DR}	2.0	_	_	V	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V},$
Data retention current	I _{CCDR}	—		30 * 2 20 * 3	μA	$V_{IN} \ge V_{CC} - 0.2 \text{ V}, \text{ or}$ 0 V $\le V_{IN} \le 0.2 \text{ V}$
Chip deselect to data retention time	t _{CDR}	2.0			ns	See retention
Operation recovery time	t _R	t _{RC} * 1			ns	-waveform

Notes: 1. Read cycle time

2. $V_{CC} = 3.0 V$ 3. $V_{CC} = 2.0 V$

Low V_{CC} Data Retention Waveform

